Cleavage of Furan-2-yl, 2-Thienyl-, Benzo[b]furan-2-yl-, and Benzo[b]thiophen-2-yl-methyl(trimethyl)silanes (RCH₂SiMe₃) by Methanolic Sodium Methoxide; Acidities of the Corresponding RCH₃ Species

Pasquale Dembech and Giancarlo Seconi*

Istituto dei composti del carbonio continenti eteroatomi e loro applicazione, C.N.R., Via Tolara di Sotto 89, 40064 Ozzano Emilia (Bologna), Italy Colin Eaborn, Juan A. Rodriguez, and John G. Stamper School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 90J

Rates of cleavage of RCH₂SiMe₃ by 2.00m-NaOMe in MeOH or MeOD at 50 °C have been determined for R = furan-2-yl, 2-thienyl, benzo[*b*]furan-2-yl, and benzo[*b*]thiophen-2-yl; the values of 10^5k_s in MeOH and (in parentheses) in MeOD, where k_s is the specific second order rate constant, are, respectively: 0.070 (0.167), 0.26 (0.52), 165 (310), and 70 (130) dm³ mol⁻¹ s⁻¹. The values of the ratios of k_s in MeOH to that in MeOD are in the range 0.42—0.54, consistent with rate-determining separation of the carbanion RCH₂⁻. [In contrast, for 2-thienylmethyl(trimethyl)stannane, for which $10^5 k_s$ is 1.57 (1.55), the ratio is 1.01, consistent with electrophilic assistance by proton transfer from the solvent to the separating carbon centre.] The results are discussed in the light of the deprotonation energies calculated (STO-3G) for the corresponding carbon acids RCH₃, and approximate pK_a values are derived for the latter, *viz*. (R =) furan-2-yl, 40.6; 2-thienyl, 39.7; benzo[*b*]furan-2-yl, 35.2; benzo[*b*]thiophen-2-yl, 35.8.

Cleavage of R-SiMe₃ bonds, where R is a carbon-centred organic ligand, by NaOMe-MeOH is known normally to involve rate-determining formation of the carbanion R^{-} ;¹ thus the rate of reaction provides a measure of the stability of R^{-} , and hence of the acidity of the carbon acid RH.² (In contrast, the corresponding cleavages of R-SnMe₃ bonds usually involve attachment of a proton from the solvent to the R group as the R-Sn bond breaks.^{3,4}). We present here the results of measurement of the rates of cleavage of RCH_2SiMe_3 with R =furan-2-yl, 2-thienyl, benzo[b]furan-2-yl, and benzo[b]thiophen-2-yl, derive approximate pK_a values for the corresponding RCH₃ species, and compare the relative acidities with those calculated by a simple ab initio MO method. Cleavage of the tin compound RCH_2SnMe_3 with R = 2-thienyl was also studied, in order to see whether the normally observed differences in behaviour between the silicon and tin compounds apply in this series.

Results and Discussion

The various compounds RCH_2SiMe_3 were made by treatment of the appropriate RLi species with Me_3SiCH_2Br . The compound RCH_2SnMe_3 with R = 2-thienyl was made from 2-thienylmethylmagnesium bromide and Me_3SnCl .

The values of the specific second-order rate constants, k_s (given by dividing the observed first-order rate constant by the concentration of NaOMe) determined with 2.00M-NaOMe in MeOH or MeOD at 50 °C, are shown in Table 1, which also lists the values of: (a) the ratio, k_{rel} , of k_s for each compound relative to that for PhCH₂SiMe₃; (b) the rate isotope effect (r.i.e.), given by the ratio of k_s in MeOH to that in MeOD; (c) the known⁵ or derived pK_a value for the corresponding RCH₃ species; and (d) the calculated difference in energy, ΔE , between RCH₃ and RCH₂⁻⁷. Some data for cleavage of the tin compound RCH₂SnMe₃ with R = 2-thienyl are given in a footnote to the Table.

The features of the results are as follows.

(i) The r.i.e. values, 0.42-0.54, for the silicon compounds are in the usual range, and consistent with rate-determining separation of the carbanion RCH₂⁻ with no electrophilic assistance from the solvent. In contrast the value for the tin compound studied is 1.01, consistent with such assistance, involving proton transfer from the solvent to the separating carbon centre. The thienylmethyl-tin compound is ca. 6 times as reactive as the corresponding silicon compound in MeOH (the factor is only 3 in MeOD); this is to be compared with a factor of 16 for cleavage of the compounds PhCH₂MMe₃ in MeOH.⁴

(ii) The sequence of reactivity of the RCH_2SiMe_3 compounds, viz. R = benzo[b]furan-2-yl > benzo[b] thiophen-2-yl > 2thienyl > furan-2-yl, is the same as that observed for hydrogen exchange of the parent compounds RCH_3 in EtOK-EtOD at 180 °C.⁶ The spread of rates is greater in the hydrogen exchange.

(iii) The acidity sequence for the RCH₃ compounds indicated by the rates differs from that suggested by the calculations of ΔE only in that the latter suggest that the furyl should be very slightly more acidic than the thienyl compound. The major effects evident in the ΔE values, namely the marked increase in the stabilities of the anions RCH₂⁻ on fusion of a benzene ring, and the fact that this increase is significantly larger for the furan than for the thiophene system, are reflected in the cleavage and exchange data. It is noteworthy that the thienyl stabilizes the carbanion more than does the furyl group in RCH₂⁻, whereas the opposite is the case (as indicated by the relevant cleavage rates) for RPhCH⁻.⁷

(iv) Whereas the cleavages of the compounds RCH_2SiMe_3 proceed less readily than those for the corresponding compounds $RSiMe_3$ for R = 2-thienyl and furan-2-yl (and so, by implication, the acidities of RCH_3 are lower than those of RH), the opposite is the case for R = benzo[b]-thiophen-2-yl or -furan-2-yl, *i.e.* the benzene ring stabilizes RCH_2^- more than R^- .

(v) The k_{rel} values in Table 1 have been used along with the experimental pK_a values available for PhCH₃ and some of the compounds RH to estimate the pK_a values for the RCH₃ species shown in Table 1, a linear relationship between $\log k_{rel}$ and pK_a being assumed.

Experimental

Preparations of RCH₂SiMe₃.—These were made from Me₃SiCH₂Br and the appropriate RLi; the latter were made as previously described for R = 2-thienyl,⁸ furan-2-yl,⁹ and

Table 1. Cleavages of R'SiMe₃ by 2M-NaOMe in MeOH or MeOD at 50.0 °C and the acidities of the corresponding compounds R'H

R′	$10^{5}k_{\rm s}/{\rm dm^{3}\ mol^{-1}\ s^{-1}}$	R.i.e. ^b	k _{rel} ^c	pKad	$\Delta E/kJ \text{ mol}^{-1}$
Furan-2-yl-CH ₂	0.070 (0.167)	0.42	2.12	(40.6)	0.8007
2-Thienyl-CH ₂ $^{\bar{f}}$	0.26 (0.52)	0.50	7.9	(39.7)	0.8018
$Benzo[b]furan-2-yl-CH_2$	165 (310)	0.53	5.0×10^{3}	(35.2)	0.7778
Benzo[b]thiophen-2-yl-CH ₂	70 (130)	0.54	2.13×10^{3}	(35.8)	0.7849
Furan-2-yl			13.3	(39.3)	
2-thienyl			36.3	38.2	
Benzo[b]furan-2-yl			475	36.84	
Benzo[b]thiophen-2-yl			580	37.05	
PhCH ₂			1.0	41.2	

^a Observed first-order rate constant divided by [NaOMe]; values in parentheses refer to reactions in MeOD. ^b Ratio of k_s in MeOH to that in MeOD. ^c Rate relative to that for PhCH₂SiMe₃ at similar base concentration. ^d Experimental values for equilibrium ion-pair acidities in C₆H₁₁NHCs-C₆H₁₁NHCs-C₆H₁₁NHCs-3 or, in parentheses, values calculated by assuming log $k_{rel} \propto pK_s$. ^c Calculated values of the energy required to go from R'CH₃ to R'CH₂^{-. J} For the tin analogue, (2-thienyl)CH₂SnMe₃, the 10⁵k_s values were 1.57 and (1.55) dm³ mol⁻¹ s⁻¹, corresponding to an r.i.e. of 1.01.

Table 2. B.p.s and analytical data for RCH₂SiMe₃

	D	Found (%)		Calc. (%)	
R′	в.р. (°C/mmHg)	c	н	c	н
Furan-2-yl	150/760	62.4	9.1	62.3	9.15
2-Thienyl	90/20	55.9	8.4	56.0	8.3
Benzo[b]furan-2-yl	88/2	71.2	8.0	70.5	7.9
Benzo[b]thiophen-2-yl	118/3 *	65.4	7.4	65.4	7.3
" M.p. 61 °C					

benzo[b]thiophen-2-yl,¹⁰ and the method used for the last compound was also used to make the reagent with R = benzo[b]furan-2-yl.

The stirred RLi solution was treated dropwise at -15 °C with an equimolar amount of Me₃SiCH₂Br in tetrahydrofuran, and the mixture was allowed to warm to room temperature (*ca.* 2 h) then stirred for 10 h. The solvent was removed under reduced pressure and diethyl ether was added. The cooled mixture was treated with cold saturated aqueous NH₄Cl, and the ethereal layer was washed, dried (Na₂SO₄), and fractionally distilled. The b.p.s and analytical data are listed in Table 2.

Preparation of 2-(Trimethylstannylmethyl)thiophene.—A small amount (ca. 1 cm³) of 2-chloromethylthiophene was added under N₂ to a mixture of oven-dried Mg turnings (6.1 g, 0.25 mol), a small crystal of iodine, and anhydrous diethyl ether (300 cm³). When reaction began a mixture of more of the chloride (to a total of 33.2 g, 0.25 mol) and trimethyltin chloride (50 g, 0.25 mol) was added dropwise. The mixture was stirred overnight, then saturated aqueous NH₄Cl was carefully added with cooling, and the ethereal layer was separated, washed, dried (Na₂SO₄), and distilled under reduced pressure to give 2-(trimethylstannylmethyl)thiophene (75%), b.p. 88 °C at 7 mmHg (Found: C, 36.4; H, 5.4. C₈H₁₄SSn requires C, 36.8; H, 5.4%).

Rate Measurements.—Rates for RCH_2SiMe_3 were measured spectrophotometrically as previously described;¹¹ the wavelengths used were (R=) furyl, 242; thienyl, 254; benzo[b]-furanyl, 278; benzo[b]-thiophenyl, 270 nm. A wavelength of 270 nm was used for 2-(trimethylstannylmethyl)thiophene.

Calculations.—Minimum basis set (STO-3G) *ab initio* calculations were carried out using the Gaussian 70 package.¹²

Standard geometries¹³ were used for CH₃ and CH₂⁻ groups, and experimental geometries for the thiophene,¹⁴ furan,¹⁵ and benzo-furan and -thiophene¹⁶ rings. The values of ΔE shown in Table 1 are given by the differences in energy between the neutral and anionic species.

Acknowledgements

We thank the S.E.R.C. for support (via C. E.).

References

- 1 See G. Seconi, M. Taddei, C. Eaborn, and J. G. Stamper, J. Chem. Soc., Perkin Trans. 2, 1982, 643; C. Eaborn, J. G. Stamper, and G. Seconi, J. Organomet. Chem., 1981, 204, 27; and references therein.
- 2 Compare C. Eaborn, D. R. M. Walton, and G. Seconi, J. Chem. Soc., Chem. Commun., 1975, 937.
- 3 P. Dembech, G. Seconi, and C. Eaborn, J. Chem. Soc., Perkin Trans. 2, 1983, 301, and references therein.
- 4 C. Eaborn and G. Seconi, J. Chem. Soc., Perkin Trans. 2, 1979, 203.
- 5 A. Streitweiser, Jr., E. Juristi, and L. L. Nebenzahl, in 'Comprehensive Carbanion Chemistry, Part A. Structure and Reactivity,' eds. E. Buncel and T. Durst, Elsevier, Amsterdam, 1980, pp. 354-355.
- 6 N. N. Zatsepina and I. F. Tupitsyn, Chem. Heterocycl. Compd. (Engl. Transl.), 1974, 1397.
- 7 C. Eaborn, G. Pirazzini, G. Seconi, and A. Ricci, J. Organomet. Chem., 1980, **192**, 339.
- 8 E. Jones and I. M. Moodie, Org. Synth., 1970, 50, 104.
- 9 V. Ramanathan and R. Levine, J. Org. Chem., 1962, 27, 1216.
- 10 C. Eaborn and J. Sperry, J. Chem. Soc., 1961, 4921.
- 11 C. Eaborn and G. Seconi, J. Chem. Soc., Perkin Trans. 2, 1976, 925.
- 12 W. J. Hehre, W. A. Latham, R. Ditchfield, M. D. Newton, and J. Pople, Program 236, Quantum Chemistry Program Exchange, Indiana Univ., 1971.
- 13 J. A. Pople and M. Gordon, J. Am. Chem. Soc., 1967, 89, 4253.
- B. Bak, D. Christiansen, L. Hansen-Nygaard, and J. Rastrup-Andersen, J. Mol. Spectrosc., 1961, 7, 58.
 B. Bak, D. Christiansen, W. B. Dixon, L. Hansen-Nygaard, J.
- 15 B. Bak, D. Christiansen, W. B. Dixon, L. Hansen-Nygaard, J. Rastrup-Andersen, and M. Schottländer, J. Mol. Spectrosc., 1963, 9, 124.
- 16 M. P. Palmer and S. M. F. Kennedy, J. Chem. Soc., Perkin Trans. 2, 1974, 1893.

Received 15th July 1985; Paper 5/1196